Lesson 5: Negative Exponents and the Laws of Exponents

Classwork

Definition: For any positive number x and for any positive integer n, we define $x^{-n}=\frac{1}{x^{n}}$.
Note that this definition of negative exponents says x^{-1} is just the reciprocal $\frac{1}{x}$ of x.
As a consequence of the definition, for a positive x and all integers b, we get

$$
x^{-b}=\frac{1}{x^{b}}
$$

Exercise 1

Verify the general statement $x^{-b}=\frac{1}{x^{b}}$ for $x=3$ and $b=-5$.

Exercise 2

What is the value of $\left(3 \times 10^{-2}\right)$?

Exercise 3

What is the value of $\left(3 \times 10^{-5}\right)$?

Exercise 4

Write the complete expanded form of the decimal 4.728 in exponential notation.

For Exercises 5-10, write an equivalent expression, in exponential notation, to the one given and simplify as much as possible.

Exercise 5

Exercise 8

$5^{-3}=$
Let x be a nonzero number.
$x^{-3}=$

Exercise 6

$\frac{1}{8^{9}}=$

Exercise 7

$3 \cdot 2^{-4}=$

Exercise 10

Let x, y be two nonzero numbers.
$x y^{-4}=$

We accept that for positive numbers x, y and all integers a and b,

$$
\begin{aligned}
x^{a} \cdot x^{b} & =x^{a+b} \\
\left(x^{b}\right)^{a} & =x^{a b} \\
(x y)^{a} & =x^{a} y^{a}
\end{aligned}
$$

We claim:

$$
\begin{array}{cl}
\frac{x^{a}}{x^{b}}=x^{a-b} & \text { for all integers } a, b \\
\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}} & \text { for any integer } a
\end{array}
$$

Exercise 11
$\frac{19^{2}}{19^{5}}=$

Exercise 12

$\frac{17^{16}}{17^{-3}}=$

Exercise 13

If we let $b=-1$ in (11), a be any integer, and y be any positive number, what do we get?

Exercise 14

Show directly that $\left(\frac{7}{5}\right)^{-4}=\frac{7^{-4}}{5^{-4}}$.

Problem Set

1. Compute: $3^{3} \times 3^{2} \times 3^{1} \times 3^{0} \times 3^{-1} \times 3^{-2}=$

Compute: $5^{2} \times 5^{10} \times 5^{8} \times 5^{0} \times 5^{-10} \times 5^{-8}=$
Compute. For a nonzero number, a : $a^{m} \times a^{n} \times a^{l} \times a^{-n} \times a^{-m} \times a^{-l} \times a^{0}=$
2. Without using (10), show directly that $\left(17.6^{-1}\right)^{8}=17.6^{-8}$.
3. Without using (10), show (prove) that for any whole number n and any positive number $y,\left(y^{-1}\right)^{n}=y^{-n}$.
4. Show directly without using (13) that $\frac{2.8^{-5}}{2.8^{7}}=2.8^{-12}$.

