MATHEMATICS CURRICULUM Lesson 4 8-1

Lesson 4: Numbers Raised to the Zeroth Power

Classwork

For any numbers x, y, and any positive integers m, n, the following holds:

$$x^m \cdot x^n = x^{m+n} \tag{1}$$

$$(x^m)^n = x^{mn} \tag{2}$$

$$(xy)^n = x^n y^n \tag{3}$$

Definition:		

Exercise 1

List all possible cases of whole numbers m and n for identity (1). More precisely, when m > 0 and n > 0, we already know that (1) is correct. What are the other possible cases of m and n for which (1) is yet to be verified?

Exercise 2

Check that equation (1) is correct for each of the cases listed in Exercise 1.

MATHEMATICS CURRICULUM Lesson 4 8-1

Exercise 3

Do the same with equation (2) by checking it case-by-case.

Exercise 4

Do the same with equation (3) by checking it case-by-case.

Exercise 5

Write the expanded form of 8,374 using the exponential notation.

Exercise 6

Write the expanded form of 6,985,062 using the exponential notation.

Problem Set

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions of numbers.

1.	
	y^{12}
	= =

$$9^{15} \cdot \frac{1}{9^{15}} =$$

2.

3.
$$(7(123456.789)^4)^0 =$$

$$2^2 \cdot \frac{1}{2^5} \cdot 2^5 \cdot \frac{1}{2^2} =$$

$$\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} =$$