Lesson 3: Numbers in Exponential Form Raised to a Power

Classwork

For any number x and any positive integers m and n,

$$
\left(x^{m}\right)^{n}=x^{m n}
$$

because

$$
\begin{aligned}
\left(x^{m}\right)^{n} & =\underbrace{(x \cdot x \cdots x)^{n}}_{m \text { times }} \\
& =\underbrace{(x \cdot x \cdots x)}_{m \text { times }} \times \cdots \times \underbrace{(x \cdot x \cdots x)}_{m \text { times }} \quad \text { (n times }) \\
& =x^{m n}
\end{aligned}
$$

Exercise 1

$\left(15^{3}\right)^{9}=$

Exercise 3

$\left(3.4^{17}\right)^{4}=$

Exercise 2

$\left((-2)^{5}\right)^{8}=$

Exercise 4

Let s be a number.
$\left(s^{17}\right)^{4}=$

Exercise 5

Sarah wrote that $\left(3^{5}\right)^{7}=3^{12}$. Correct her mistake. Write an exponential expression using a base of 3 and exponents of 5,7 , and 12 that would make her answer correct.

Exercise 6

A number y satisfies $y^{24}-256=0$. What equation does the number $x=y^{4}$ satisfy?

For any numbers x and y, and positive integer n,

$$
(x y)^{n}=x^{n} y^{n}
$$

because

$$
\begin{aligned}
(x y)^{n} & =\underbrace{(x y) \cdots(x y)}_{n \text { times }} \\
& =\underbrace{(x \cdot x \cdots x)}_{n \text { times }} \cdot \underbrace{(y \cdot y \cdots y)}_{n \text { times }} \\
& =x^{n} y^{n}
\end{aligned}
$$

Exercise 7

$(11 \times 4)^{9}=$

Exercise 8
$\left(3^{2} \times 7^{4}\right)^{5}=$

Exercise 9

Let a, b, and c be numbers.
$\left(3^{2} a^{4}\right)^{5}=$

Exercise 10

Let x be a number.
$(5 x)^{7}=$

Exercise 11

Let x and y be numbers.
$\left(5 x y^{2}\right)^{7}=$

Exercise 12

Let a, b, and c be numbers.
$\left(a^{2} b c^{3}\right)^{4}=$

Exercise 13

Let x and y be numbers, $y \neq 0$, and let n be a positive integer. How is $\left(\frac{x}{y}\right)^{n}$ related to x^{n} and y^{n} ?

Problem Set

1. Show (prove) in detail why $(2 \cdot 3 \cdot 4)^{4}=2^{4} 3^{4} 4^{4}$.
2. Show (prove) in detail why $(x y z)^{4}=x^{4} y^{4} z^{4}$ for any numbers x, y, z.
3. Show (prove) in detail why $(x y z)^{n}=x^{n} y^{n} z^{n}$ for any numbers x, y, z, and for any positive integer n.
