Lesson 22: An Exercise in Changing Scales

Classwork

Using the new scale drawing of your dream room, list the similarities and differences between this drawing and the original drawing completed for Lesson 20.

$$
\text { Similarities } \quad \text { Differences }
$$

Original Scale Factor: \qquad New Scale Factor: \qquad
What is the relationship between these scale factors?

Key Idea:

Two different scale drawings of the same top-view of a room are also scale drawings of each other. In other words, a scale drawing at a different scale can also be considered a scale drawing of the original scale drawing.

Example 1: Building a Bench

To surprise her mother, Taylor helped her father build a bench for the front porch. Taylor's father had the instructions with drawings but Taylor wanted to have her own copy. She enlarged her copy to make it easier to read. Using the following diagram, fill in the missing information.

The pictures below show the diagram of the bench shown on the original instructions and the diagram of the bench shown on Taylor's enlarged copy of the instruction.

Scale Factors

	Bench	Father's Diagram	Taylor's Diagram
Bench	1		
Father's Diagram		1	
Taylor's Diagram			1

Exercise 1

Carmen and Jackie were driving separately to a concert. Jackie printed a map of the directions on a piece of paper before the drive, and Carmen took a picture of Jackie's map on her phone. Carmen's map had a scale factor to the actual distance of $\frac{1}{563270}$. Using the pictures, what is the scale of Carmen's map to Jackie's map? What was the scale factor of Jackie's printed map to the actual distance?

Jackie's Map

Carmen's Map

[Type here]

Exercise 2

Ronald received a special toy train set for his birthday. In the picture of the train on the package, the box car has the following dimensions: length is $\mathbf{4} \frac{\mathbf{5}}{\mathbf{1 6}}$ inches; width is $1 \frac{1}{8}$ inches; and height is $1 \frac{5}{8}$ inches. The toy box car that Ronald received has dimensions / is 17.25 inches; w is 4.5 inches; and h is 6.5 inches. If the actual boxcar is 50 feet long:
a. Find the scale factor of the picture on the package to the toy set.
b. Find the scale factor of the picture on the package to the actual boxcar.
c. Use these two scale factors to find the scale factor between the toy set and the actual boxcar.
d. What are the width and height of the actual boxcar?

Lesson Summary:

The scale drawing at a different scale is a scale drawing of the original scale drawing.
To find the scale factor for the original drawing, write a ratio to compare a drawing length from original drawing to its corresponding actual length from the second scale drawing.

Refer to the example below where we compare drawing length from Original Scale drawing to its corresponding actual length from the New Scale drawing:

6 inches $/ 12$ feet, or 0.5 feet $/ 12$ feet converting to the same units
This gives an equivalent ratio of $\frac{\mathbf{1}}{\mathbf{2 4}}$ for the scale factor of the original drawing.
Original Scale drawing:
(unknown SF)

New Scale drawing (different scale): \square Length is 2 inches on drawing, or 12 feet actual length using given scale

1 inch represents 6 feet

Problem Set

1. For the scale drawing, the actual lengths are labeled onto the scale drawing. Measure the lengths of the scale drawing and draw a new scale drawing with a scale factor (SD2 to SD1) of $\frac{1}{2}$.

[Type here]
2. Use the measurements on the diagrams below to identify whether each would be scale drawings of a garden. The garden contains a rectangular portion measuring 24 ft by 6 ft and two circular fountains each with a diameter of 5 ft .

3. Compute the scale factor of the new scale drawing (SD2) to original scale drawing (SD1) using information from the given scale drawing.
a. Original Scale Factor: $6 / 35$

9 ft
Scale Factor: \qquad
b. Original Scale Factor: $1 / 12$

3 in $\quad 3$ in

$$
1 / 2 \text { in }
$$

New Scale Factor: 1/280

2 inches

2.125 inches
2.25 inches

New Scale Factor: 3

Scale Factor: \qquad
[Type here]
c. Original Scale Factor: 20

New Scale Factor: 25

Scale Factor: \qquad

