Lesson 18: Slicing on an Angle

Classwork

Example 1

With your group, discuss whether a right rectangular prism can be sliced at an angle so that the resulting slice looks like the figure in Figure 1? If it is possible, draw an example of such a slice into the following prism.

Figure 1

Exercise 1

a. With your group, discuss how to slice a right rectangular prism so that the resulting slice looks like the figure in Figure 2. Justify your reasoning.

Figure 2
b. With your group, discuss how to slice a right rectangular prism so that the resulting slice looks like the figure in Figure 3. Justify your reasoning.

Figure 3

Example 2

With your group, discuss whether a right rectangular prism can be sliced at an angle so that the resulting slice looks like the figure in Figure 4. If it is possible, draw an example of such a slice into the following prism.

Figure 4

Exercise 2

In Example 2, we discovered how to slice a right rectangular prism to makes the shapes of a rectangle and a parallelogram. Are there other ways to slice a right rectangular prism that result in other quadrilateral-shaped slices?

Example 3

a. Slicing a plane through a right rectangular prism so that the slice meets the three faces of the prism, the resulting slice is in the shape of a triangle; if the slice meets four faces, the resulting slice is in the shape of a quadrilateral. Is it possible to slice the prism in a way that the region formed is a pentagon (as in Figure 5)? A hexagon (as in Figure 6)? An octagon (as in Figure 7)?

Figure 5

Figure 6

Figure 7
b. Draw an example of a slice in a pentagon shape and a slice in a hexagon shape.

Example 4

a. With your group, discuss whether a right rectangular pyramid can be sliced at an angle so that the resulting slice looks like the figure in Figure 8. If it is possible, draw an example of such a slice into the following pyramid.

Figure 8

Figure 9

Problem Set

1. Draw a slice into the right rectangular prism at an angle in the form of the provided shape, and draw each slice as a 2D shape.

Slice made in the prism

b. A quadrilateral

c. A pentagon

d. A hexagon

2. Draw slices at an angle in the form of each given shape into each right rectangular pyramid, and draw each slice as a 2D shape:

Slice made in the pyramid
Slice as a 2D shape
a. A triangle

b. A quadrilateral

c. A pentagon

3. Why isn't it possible to draw a slice in the shape of a hexagon for a right rectangular pyramid?
4. If the slicing plane meets every face of a right rectangular prism, then the slice is a hexagonal region. What can you say about opposite sides of the hexagon?
5. Draw a right rectangular prism so that rectangles $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are base faces. The line segments $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$ and $D D^{\prime}$ are edges of the lateral faces.
a. A slicing plane meets the prism so that vertices A, B, C, and D lie on one side of the plane and vertices A^{\prime}, B^{\prime}, C^{\prime}, and D^{\prime} lie on the other side. What other information can be concluded about the slice based on its position?
b. A slicing plane meets the prism so that vertices A, B, C, and B^{\prime} are on one side of the plane and vertices A^{\prime}, D^{\prime}, C^{\prime}, and D are on the other side. What other information can be concluded about the slice based on its position?

